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Abstract—In nitrile solvents vinylsilyl ethers of propargylic alcohols undergo Pauson–Khand reaction with polysiloxane extrusion
and concomitant reduction of the propargylic C�O bond. The product enones are formally the result of an intermolecular PKR
reaction with ethylene. © 2002 Elsevier Science Ltd. All rights reserved.

The isoprostanes (e.g. 4) are receiving considerable
attention for their ability to mimic the biological activ-
ity of the prostaglandins.1 It seemed that a Pauson–
Khand reaction with a silicon tethered2 enyne 1 suitably
functionalized at R1 and R2 could provide an enan-
tioselective and efficient route to the isoprostane core
(Scheme 1). While the Pauson–Khand reaction (PKR)
is a popular strategy for cyclopentenone synthesis,3 the
utilization of vinyl silanes as the olefinic component in
this reaction has seen little use. In this regard, Saigo
reported that under standard Pauson–Khand condi-
tions 3-sila-1,7-enynes undergo cycloisomerization to
eight-membered cyclic dienylsilanes (5�6, Scheme 2),
but cyclopentenones 7 were not detected.4

At the onset of this project the prospect of the 4-sila-
cyclopentenones undergoing Lewis acid-catalyzed desil-
ylation was an obvious potential challenge to the
successful implementation of the strategy outlined in
Scheme 1.5 Structurally related enones have been pre-
pared by Whitby through a zirconocene-mediated
cyclization/carbonylation sequence,6 but the general
effectiveness of the Tamao–Fleming oxidation with

enones of general structure 3 has not been fully
explored.

Enyne 8, an internal alkyne with an aliphatic sub-
stituent at the propargylic position, was selected as a
model substrate for the isoprostane synthesis (Scheme
3). Enyne 8 was readily prepared by silylation of the
corresponding alcohol (Et3N, CH2Cl2, 0°C to rt, >85%
yield) with commercially available Me2SiCl(CH�CH2).
In the initial experiments to identify optimum condi-
tions for the PKR, many experimental variants were
explored, including the use of catalytic7–10 conditions
and the addition of adjuncts reported to facilitate the
PKR: silica,11 amine N-oxides,12 DMSO,13 primary
amines,14 molecular sieves,15 sulfides16 and oxygen.
However, none of these methods provided the desired
cyclopentenone 9, but instead metal decomplexation,
hydrolysis of the silyl ether and/or decomposition
occurred. In contrast, the use of damp nitrile solvents
had a dramatic effect on the course of the reaction, and
in refluxing acetonitrile (30 min) the Co2(CO)6 complex
of enyne 8 was converted to enone 10 in 62% isolated
yield.17,18 The beneficial effect of nitrile solvents on the

Scheme 1.
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Scheme 2.

bons bound to the silicon tether were reduced during
the course of the reaction. This new method offers a
convenient alternative to the intermolecular Pauson–
Khand reaction with ethylene gas. In these reactions,
the reduction of the propargylic oxygen indicates a
process more complicated than mere Lewis acid medi-
ated desilylation. Further details providing insight into

Scheme 3.

Table 1. Pauson–Khand reaction of vinylsilane-derived
enynesa

PKR has been documented.19 The use of anhydrous
acetonitrile had a deleterious effect on the efficiency of
the reaction.20

To explore the generality of this new reaction, a variety
of substrates with substituents offering different elec-
tronic and steric properties at the alkynyl and propar-
gylic positions were examined.21 The results of these
studies are presented in Table 1. Entry 1 showed that
terminal alkynes participate in the reaction, although
this substrate required 24 h for consumption of starting
material. In entries 2 and 3, enynes without substitution
at the propargylic position were shown to undergo
analogous cyclization. In entries 4 and 5, enynes with a
doubly activated benzylic and propargylic ether each
provided enone 18 in moderate yield. Throughout these
investigations, and illustrated specifically with entries 4
and 5, both the dimethyl and diphenyl silyl tethers
behaved similarly. The reaction of the pivaldehyde eny-
nes 20 and 22 were anomalous in that no reduction at
the propargylic position occurred in these substrates.
The diphenyl silanol group in product 23 helped secure
crystals (mp 95–98°C, hexanes) suitable for X-ray anal-
ysis (Fig. 1).22 Bicyclic enones (e.g. 3) were not observed
in any of the reactions reported in Table 1.

The enone products in Table 1 are formally the result
of an intermolecular PKR with an alkyne and ethylene
gas.23,24 For most laboratory preparations this new
method is superior to the reaction with ethylene for
several reasons. Specifically, the reaction does not
require high pressures or special equipment, and the
propargylic oxygen ensures that only one of the two
possible isomeric enones is formed during the reaction.

In summary, we have reported the first Pauson–Khand
reactions of silicon-tethered enynes in which the car- Figure 1. ORTEP representation of 23.
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the reaction mechanism and full experimental details
will be reported elsewhere.20
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